A FINITE DIFFERENCE METHOD FOR THE
ONE-DIMENSIONAL VARIATIONAL
BOUSSINESQ EQUATIONS

A. SURYANTO AND E. VAN GROesen

Abstract. The variational Boussinesq equations derived by Klopman et. al. (2005) conserve mass, momentum and positive-definite energy. Moreover, they were shown to have significantly improved frequency dispersion characteristics, making it suitable for wave simulation from relatively deep to shallow water. In this paper we develop a numerical code for the variational Boussinesq equations. This code uses a fourth-order predictor-corrector method for time derivatives and fourth-order finite difference method for the first-order spatial derivatives. The numerical method is validated against experimental data for one-dimensional nonlinear wave transformation problems. Furthermore, the method is used to illustrate the dispersive effects on tsunami-type of wave propagation.