Fixed point Theorems for Non-self mappings with nonlinear contractive condition in strictly convex FCM-spaces

Mohammad H.M. Rashid

Abstract


In this paper we define convex, strict convex and normal structures for sets in fuzzy cone metric spaces. Also, existence and uniqueness of a fixed point for non-self mappings with nonlinear contractive condition will be proved, using the notion of strictly convex structure. Moreover, we give some examples illustrate our results.


Keywords


fixed Point; convex structure; normal structure; fuzzy normed space

Full Text:

PDF

References


%==============================================================

bibitem{AK}

N.A. Assad, W.A. Kirk, Fixed-point theorems for set-valued mappings of contractive type, Pacic

J. Math., {bf43}(1972), 553--562.

%==================================================================================

bibitem{Banach}

S. Banach, Sur la op'erations dans les ensembles abstraits et leurs applications aux 'equations

int'egrales, Fund. Math., {bf3}(1922), 133--181.

%=======================================================================

bibitem{BW}

D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., {bf20}(1969), 458--464.

%===================================================================================

bibitem{C1}

L.B. 'Ciri'c, Common fixed point theorems for family on non-self mappings in convex metric

spaces, Nonlinear Anal., {bf71}(2009), 1662--1669.

%====================================================

bibitem{C2}

L.B. 'Ciri'c, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts,

{bf23}(1998), 25--31.

%===============================================================================

bibitem{C3}

L.B. 'Ciri'c, Contractive type non-self mappings on metric spaces of hyperbolic type, J. Math.

Anal. Appl., {bf317}(2006), 28--42.

%========================================================================

bibitem{GR1}

L. Gaji'c, V. Rakov cevi'c, Quasicontraction nonself-mappings on convex metric spaces and com-

mon fixed point theorems, Fixed Point Theory Appl., {bf3}(2005), 365--375.

%============================================================================

bibitem{GR2}

L. Gaji'c, V. Rakov cevi'c, Pair of non-self-mappings and common xed points, Appl. Math. Com-

put., {bf187}(2007), 999--1006.

%=============================================================================

bibitem{GV}

A. George and P. Veeramani, On some results in fuzzy metric spaces, J. Fuzzy Sets Syst., textbf{64} (1994), 395--399.

%========================================================================

bibitem{Hadzic-0}

O. Hadv zi'c, Common fixed point theorems in probabilistic metric spaces with convex structure,

Zb. rad. Prirod-Mat.Fak.ser. Mat. textbf{18} (1987),165--178.

%=============================================================================================

bibitem{HZ}

L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math.

Anal. App., textbf{332}(2007), 1468--1476.

%=======================================================================================

bibitem{Jesic}

S.N. Jev si'c, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric space,

Chaos, Solitions & Fractals, textbf{41} (2008), 292--301.

%=====================================================================

bibitem{Jesic-1}

S.N. Jev si'c, R. M. Nikolic and A. Babav cev, A common fixed point theorem

in strictly convex Menger PM-spaces, Filomat textbf{28:4} (2016), 735--743.

%========================================================================

bibitem{OKT}

T. "Oner, M. B. Kandemir and B. Tanay, Fuzzy cone metric spaces, J.Nonlinear Sci. Appl. {bf8}(2015), 610--616.

%==========================================================================

bibitem{KM}

O. Kramosil and J.Michalek, Fuzzy metric and Statistical metric spaces, Kybernetika, textbf{11} (1975), 326--334.

%========================================================================

bibitem{R}

B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon., {bf23}(1978),

--459.

%==================================================================================

bibitem{RH}

Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings",

J. Math. Anal. Appl., textbf{345}, 719--724 (2008).

%============================================================================

bibitem{Sch2}

B. Schweizer and A. Sklar, Probabilistical Metric Spaces, Dover Publications, New York, 2005.

%========================================================================================

bibitem{TA}

D. Turkoglu , M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings,

Acta Math. Sin., textbf{26 }, 489--496(2010).

%===========================================================================

bibitem{Takahashi}

W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., textbf{22}(1970), 142--149.

%===================================================================================

bibitem{Zadeh}

L.A. Zadeh, Fuzzy Sets, Inform Contr. textbf{8} (1965), 338--353.

%==========================================================================================================




DOI: https://doi.org/10.22342/jims.26.1.731.1-21

Refbacks

  • There are currently no refbacks.



Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243
Email: jims.indoms@gmail.com


p-ISSN: 2086-8952 | e-ISSN: 2460-0245


Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats